3.290 \(\int \frac {x^{3/2}}{a+b x^2} \, dx\)

Optimal. Leaf size=202 \[ \frac {\sqrt [4]{a} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}+\frac {\sqrt [4]{a} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} b^{5/4}}+\frac {2 \sqrt {x}}{b} \]

[Out]

1/2*a^(1/4)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/b^(5/4)*2^(1/2)-1/2*a^(1/4)*arctan(1+b^(1/4)*2^(1/2)*x^(
1/2)/a^(1/4))/b^(5/4)*2^(1/2)+1/4*a^(1/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/b^(5/4)*2^(1/2
)-1/4*a^(1/4)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/b^(5/4)*2^(1/2)+2*x^(1/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {321, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac {\sqrt [4]{a} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}+\frac {\sqrt [4]{a} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} b^{5/4}}+\frac {2 \sqrt {x}}{b} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(a + b*x^2),x]

[Out]

(2*Sqrt[x])/b + (a^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) - (a^(1/4)*ArcTan[1
+ (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) + (a^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[
x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(5/4)) - (a^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2
*Sqrt[2]*b^(5/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^{3/2}}{a+b x^2} \, dx &=\frac {2 \sqrt {x}}{b}-\frac {a \int \frac {1}{\sqrt {x} \left (a+b x^2\right )} \, dx}{b}\\ &=\frac {2 \sqrt {x}}{b}-\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b}\\ &=\frac {2 \sqrt {x}}{b}-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b}-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b}\\ &=\frac {2 \sqrt {x}}{b}-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^{3/2}}-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^{3/2}}+\frac {\sqrt [4]{a} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} b^{5/4}}+\frac {\sqrt [4]{a} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} b^{5/4}}\\ &=\frac {2 \sqrt {x}}{b}+\frac {\sqrt [4]{a} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}+\frac {\sqrt [4]{a} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}\\ &=\frac {2 \sqrt {x}}{b}+\frac {\sqrt [4]{a} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{5/4}}+\frac {\sqrt [4]{a} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}-\frac {\sqrt [4]{a} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{5/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 189, normalized size = 0.94 \[ \frac {\sqrt {2} \sqrt [4]{a} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )-\sqrt {2} \sqrt [4]{a} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )+2 \sqrt {2} \sqrt [4]{a} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )-2 \sqrt {2} \sqrt [4]{a} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )+8 \sqrt [4]{b} \sqrt {x}}{4 b^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/(a + b*x^2),x]

[Out]

(8*b^(1/4)*Sqrt[x] + 2*Sqrt[2]*a^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] - 2*Sqrt[2]*a^(1/4)*ArcTa
n[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] + Sqrt[2]*a^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqr
t[b]*x] - Sqrt[2]*a^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(4*b^(5/4))

________________________________________________________________________________________

fricas [A]  time = 0.96, size = 124, normalized size = 0.61 \[ -\frac {4 \, b \left (-\frac {a}{b^{5}}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {b^{2} \sqrt {-\frac {a}{b^{5}}} + x} b^{4} \left (-\frac {a}{b^{5}}\right )^{\frac {3}{4}} - b^{4} \sqrt {x} \left (-\frac {a}{b^{5}}\right )^{\frac {3}{4}}}{a}\right ) + b \left (-\frac {a}{b^{5}}\right )^{\frac {1}{4}} \log \left (b \left (-\frac {a}{b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - b \left (-\frac {a}{b^{5}}\right )^{\frac {1}{4}} \log \left (-b \left (-\frac {a}{b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 4 \, \sqrt {x}}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-1/2*(4*b*(-a/b^5)^(1/4)*arctan((sqrt(b^2*sqrt(-a/b^5) + x)*b^4*(-a/b^5)^(3/4) - b^4*sqrt(x)*(-a/b^5)^(3/4))/a
) + b*(-a/b^5)^(1/4)*log(b*(-a/b^5)^(1/4) + sqrt(x)) - b*(-a/b^5)^(1/4)*log(-b*(-a/b^5)^(1/4) + sqrt(x)) - 4*s
qrt(x))/b

________________________________________________________________________________________

giac [A]  time = 0.65, size = 178, normalized size = 0.88 \[ -\frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{2}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{2}} + \frac {2 \, \sqrt {x}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/b^2 - 1/2*sqrt(2)
*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/b^2 - 1/4*sqrt(2)*(a*b^3)^(1
/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^2 + 1/4*sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b
)^(1/4) + x + sqrt(a/b))/b^2 + 2*sqrt(x)/b

________________________________________________________________________________________

maple [A]  time = 0.01, size = 140, normalized size = 0.69 \[ -\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{2 b}-\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{2 b}-\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )}{4 b}+\frac {2 \sqrt {x}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(b*x^2+a),x)

[Out]

2*x^(1/2)/b-1/4/b*(a/b)^(1/4)*2^(1/2)*ln((x+(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*2^(1/2)*x^
(1/2)+(a/b)^(1/2)))-1/2/b*(a/b)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)-1/2/b*(a/b)^(1/4)*2^(1/2)*
arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 2.90, size = 185, normalized size = 0.92 \[ -\frac {\frac {2 \, \sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} \sqrt {a} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} a^{\frac {1}{4}} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{b^{\frac {1}{4}}} - \frac {\sqrt {2} a^{\frac {1}{4}} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{b^{\frac {1}{4}}}}{4 \, b} + \frac {2 \, \sqrt {x}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*sqrt(a)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b))
)/sqrt(sqrt(a)*sqrt(b)) + 2*sqrt(2)*sqrt(a)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/
sqrt(sqrt(a)*sqrt(b)))/sqrt(sqrt(a)*sqrt(b)) + sqrt(2)*a^(1/4)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x
 + sqrt(a))/b^(1/4) - sqrt(2)*a^(1/4)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/b^(1/4))/b +
 2*sqrt(x)/b

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 55, normalized size = 0.27 \[ \frac {2\,\sqrt {x}}{b}-\frac {{\left (-a\right )}^{1/4}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{b^{5/4}}-\frac {{\left (-a\right )}^{1/4}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{b^{5/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(a + b*x^2),x)

[Out]

(2*x^(1/2))/b - ((-a)^(1/4)*atan((b^(1/4)*x^(1/2))/(-a)^(1/4)))/b^(5/4) - ((-a)^(1/4)*atanh((b^(1/4)*x^(1/2))/
(-a)^(1/4)))/b^(5/4)

________________________________________________________________________________________

sympy [A]  time = 5.89, size = 172, normalized size = 0.85 \[ \begin {cases} \tilde {\infty } \sqrt {x} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 \sqrt {x}}{b} & \text {for}\: a = 0 \\\frac {2 x^{\frac {5}{2}}}{5 a} & \text {for}\: b = 0 \\\frac {\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} \log {\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 b} - \frac {\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} \log {\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 b} + \frac {\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} \operatorname {atan}{\left (\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {x}}{\sqrt [4]{a} \sqrt [4]{\frac {1}{b}}} \right )}}{b} + \frac {2 \sqrt {x}}{b} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*sqrt(x)/b, Eq(a, 0)), (2*x**(5/2)/(5*a), Eq(b, 0)), ((-1)**(1
/4)*a**(1/4)*(1/b)**(1/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b) - (-1)**(1/4)*a**(1/4)*(1/b)
**(1/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b) + (-1)**(1/4)*a**(1/4)*(1/b)**(1/4)*atan((-1)**
(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/b + 2*sqrt(x)/b, True))

________________________________________________________________________________________